
Object Detection using

Neural Networks

By D. Naveen Reddy

Tasks

Detection of a Logo in a TV Feed.

Recognition of the Logo.

Why ?

 To know which House Promo is being played and to categorize it
automatically.

 This also leads us to the question “House Promo or Commercial”.

Initial Approach : HOG + SVM

 HOG - Histogram of Oriented Gradients

1. Get P positive samples from the training data and extract HOG
descriptors from these samples.

2. Get N negative samples from a negative training set that does not
contain the objects.

3. Train SVM for the positive and negative samples.

Continued..

4. Hard-negative mining.

 Run the sliding window on every image of the negative training set.

 - At each window, compute HOG descriptors and apply the classifier. If
classified incorrectly :

 i) Record the feature vector associated with the FP patch.

 ii) Along with probability of the classification.

5. Take the FP samples from previous stage and sort by the confidence(or
probability) and train the classifier again.

6. For the test dataset, extract HOG descriptors and apply the classifier.

 - If classifier detects and object with sufficiently large probability,
record the bounding box of the window.

Testing for a Particular Show

 10 images were of the show “Dil Bole Oberoi” were given are training
images and other unseen 6 images were used for testing.

 It was observed that 2 out of 6 images gave positive results and the right

region of the logo was detected.

Next Approach :

Using Convolutional Neural Networks

 Introduction to Neural Networks.

Introduction to Neural Networks

 An Artificial Neural Network (ANN) is a computational model that is
inspired by the way biological neural networks in the human brain
process information.

 Neurons – Building Blocks

An illustration of a biological neuron (left) and its mathematical model (right).

 The power of neural networks come from their ability to learn the
representation in your training data and how to best relate it to the
output variable that you want to predict.

 In this sense neural networks learn a mapping. (Function)

 Mathematically, they are capable of learning any mapping function
and have been proven to be a universal approximation algorithm.

Networks of Neurons

Training Networks - Example

 Patients medical record data and whether they had an onset of diabetes within five
years.

1. Number of times pregnant.

2. Plasma glucose concentration a 2 hours in an oral glucose tolerance test.

3. Diastolic blood pressure (mm Hg).

4. Triceps skin fold thickness (mm).

5. 2-Hour serum insulin (mu U/ml).

6. Body mass index.

7. Diabetes pedigree function.

8. Age (years).

9. Class, onset of diabetes within five years.

6,148,72,35,0,33.6,0.627,50,1

1,85,66,29,0,26.6,0.351,31,0

8,183,64,0,0,23.3,0.672,32,1

1,89,66,23,94,28.1,0.167,21,0

0,137,40,35,168,43.1,2.288,33,1

1. For this example, we use a training algorithm for neural networks is
called stochastic gradient descent.

2. This is where one row of data is exposed to the network at a time as
input. The network processes the input upward activating neurons as it
goes to finally produce an output value. This is called a forward pass on
the network.

3. The output of the network is compared to the expected output and an
error is calculated. This error is then propagated back through the
network, one layer at a time, and the weights are updated according
to the amount that they contributed to the error. This is called the
backpropagation algorithm.

4. The process is repeated for all of the examples in your training data.

Convolutional Neutral Networks

 A convolutional neural network (CNN, or ConvNet) is a class of deep, feed-

forward artificial neural network that have successfully been applied to

analyzing visual imagery.

Recurrent neural network

 A recurrent neural network (RNN) is a class of artificial neural network where

connections between units form a directed cycle.

 RNNs can use their internal memory to process arbitrary sequences of inputs

Applications :
1. Unsegmented, connected

handwriting recognition

2. Speech recognition

Interesting Applications

 1. Automatic Colorization of Black and White Images

Using very large convolutional neural networks

Automatically Adding Sounds To Silent Movies

 Using both convolutional neural networks and LSTM recurrent neural networks.

Automatic Machine Translation

 Automatic Translation of Text.

 Automatic Translation of Images.

CNNS + Stacked networks of large LSTM recurrent neural networks

Instant Visual Translation

Automatic Handwriting Generation

 Using Recurrent Neural Networks

Interactive Demo :

http://www.cs.toronto.edu/~graves/handwriting.html

Automatic Image Caption Generation

CNNS + Recurrent

Neural Networks

Others.

 Automatic Text Generation

 Automatic Game Playing

 Object Classification and Detection in Photographs

1. Facebook uses neural nets for their automatic tagging algorithms,

2. Google for their photo search,

3. Amazon for their product recommendations,

4. Pinterest for their home feed personalization,

5. Instagram for their search infrastructure.

CNNs

Layers

 Convolution Layers

By using more filters, we are able to preserve the spatial dimensions better.

Fully Connected Layer

 Now that we can detect these high level features, we attach a fully

connected layer to the end of the network.

 This layer basically takes an input volume (whatever the output is of the

conv or ReLU or pool layer preceding it) and outputs an N dimensional

vector where N is the number of classes that the program has to choose

from.

 For example, if you wanted a digit classification program, N would be 10

since there are 10 digits.

 Each number in this N dimensional vector represents the probability of a

certain class.

Max Pooling

 A pooling layer is also referred to as a downsampling layer.

Basic Architecture

Concept Of Transfer Learning

 Transfer learning is the process of taking a pre-trained model (the weights
and parameters of a network that has been trained on a large dataset by
somebody else) and “fine-tuning” the model with your own dataset.

 Pre-trained model :

 ImageNet is a dataset that contains 14 million images with over 1,000 classes.

 The idea is that this pre-trained model will act as a feature extractor.

 You will remove the last layer of the network and replace it with your own

classifier.Pre-trained model :

 Rather than training the whole network through a random initialization of

weights, we can use the weights of the pre-trained model (and freeze them)

and focus on the more important layers (ones that are higher up) for training.

CNN Models for Object Detection

Current state of the art Object detection models are :

 Faster R-CNN (Microsoft)

YOLO (You Only Look Once) –> Real-time Object
Detection.

Why we chose YOLO ?

Uses a single neural network for the task of object detection.

 Whereas RCNN had different networks for each task and was slower

compared to Yolo.

Faster RCNN

YOLO v2

Demo of Yolo V2.

How we trained YOLO for Logo ?

 We wanted to see if this would work for Logo’s by considering Logo
as the object.

 Yolo architecture was a deep network with about 24 Layers.

 Initial Model : Trained only for Hindi Channel Logos. (About 600
Logos)

• Training Data contained the Logo image with a text file
containing the bounding coordinates of the logo which were
manually tagged.

• Model was trained on Nvidia GeForce 920M for about 10-12
hours for 1000 iterations.

Results

 The results were amazing and Yolo detected Logos of other language

channels as well.

Detection Time
 Accuracy vs Speed TradeOff

 On GPU : About 0.2 seconds per image.

 On CPU (or Server) : About 5-6 seconds per image.

We wanted to see how a smaller version of Yolo called Tiny-Yolo which

was about 9 layers (comparatively faster) would work.

In a similar fashion, it was trained on GPU for about 5000 iterations.

 On GPU : About 0.4 seconds per image.

 On CPU (or Server) : About 10 seconds per image.

Yolo (More Accurate):

Tiny-Yolo (Slightly less accurate compared to Yolo):

Why are GPUs required ?

 Deep learning involves huge amount of matrix multiplications

and other operations which can be massively parallelized and
thus sped up on GPU-s.

Parallelization on Server

 The server had 32 CPUs and we wanted to see if there would be any speed

up with parallelization.

 We observed that a function called GEMM (GEneral Matrix to Matrix

Multiplication) took most of computation time.

 We parallelized this function using OpenMP.

Detection Time on Server with Parallelization:

i) Yolo : About 2 seconds per image. (Before 10 sec/image.)

ii) Tiny-Yolo : About 1.5 seconds per image. (Before 6 sec/image)

Logo Recognition

[Index our dataset] <-> [Image Descriptor] <-> [Feature Vector]

1. SIFT descriptor.

2. CNN based feature descriptor.

Query Image
[Feature Vector]

Indexed Dataset :

- Feature Vector 1 [Image 1]

- Feature Vector 2 [Image 2]

- Feature Vector 3 [Image 3]

.

.

.

.

.

- Feature Vector n [nth Image]

Finding similar sets

-- Using Distance Metric

-- knnMatch + Ratio Test

SIFT : knnMatch + Ratio Test

 # Match the features

 bf = cv2.BFMatcher()

 matches = bf.knnMatch(queryFeatures,data[1], k=2)

 # Apply ratio test

 good = []
 for m,n in matches:

 if m.distance < 0.75*n.distance:

 good.append([m])

Image with highest number of good matches was returned as

the result.

In case of CNN, we use a distance metric and return the

image with the least distance.

Model failed for some cases.

No detection

Problems :

 Edges being cut out.

 Only part of logo detected.

Multiple Detections

New Model : Trained across all Language

Channels.

 This was done for both Yolo and Tiny-Yolo models.

Model was trained for Hindi, English, Telugu, Kannada,
Marathi, Tamil and Malayalam. (Total about 600 Images)

 Same training process was repeated.

Testing

 For the purpose of testing, we carefully prepared and manually picked

about 110 images.

 Picked different types of logos.

 Logos with text only, logos with text and some background, logos with
people.

 Logos with graphics

Goal : To see if the model works for the majority of dataset i.e. the typical

kind of logos.

Images from the Testing Dataset

Summary of Results

 Old-Yolo : 105 Detections (5 images had no detection)

 Old-Tiny-Yolo : 99 Detections (11 images had no detection)

 Yolo - 109 Detections (1 image had no detection)

 Tiny-Yolo : 107 Detections (3 images had no detection)

Speeding Up The Recognition.

 Locality Sensitive Hashing

 Locality-sensitive hashing (LSH) reduces the dimensionality of high-
dimensional data.

 LSH hashes input items so that similar items map to the same “buckets” with
high probability

 LSH differs from conventional and cryptographic hash functions because it

aims to maximize the probability of a “collision” for similar items.

Generate candidate pairs i.e. likely similar items and search only among them.

Generate candidate pairs i.e. likely similar items and search only among them

Speed Gain

 Time taken by LSH to search : less than 0.1 sec.

CNN based brute force search : 0.4 – 0.5 seconds.

Future Work

 This can be extending for Product Detection and

Recognition as well.

 For products, the search space increases so we would need

to use a faster search method such as LSH.

Facebook’s DeepMask+SharpMask

Thank You 

